首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimum detecting arrays for independent interaction faults
Authors:Ce Shi  Cheng Min Wang
Institution:1. School of Mathematics and Information Science, Shanghai Lixin University of Commerce, Shanghai 201620, P. R. China; 2. School of Science, Jiangnan University, Wuxi 214122, P. R. China
Abstract:The use of detecting arrays (DTAs) is motivated by the need to locate and detect interaction faults arising between the factors in a component-based system in software testing. The optimality and construction of DTAs have been investigated in depth for the case in which all the interaction faults are assumed to have the same strength; however, as a practical concern, the strengths of these faults are not always identical. For real world applications, it would be desirable for a DTA to be able to identify and detect faulty interactions of a strength equal to or less than a specified value under the assumption that the faulty interactions are independent from one another. To the best of our knowledge, the optimality and construction of DTAs for independent interaction faults have not been studied systematically before. In this paper, we establish a general lower bound on the size of DTAs for independent interaction faults and explore the combinatorial feature that enable these DTAs to meet the lower bound. Taking advantage of this combinatorial characterization, several classes of optimum DTAs meeting the lower bound are presented.
Keywords:Detecting arrays  super-simple  independent interaction faults  optimum  
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《数学学报(英文版)》浏览原始摘要信息
点击此处可从《数学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号