首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Advances in relativistic molecular quantum mechanics
Authors:Wenjian Liu
Institution:Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
Abstract:A quantum mechanical equation HΨ=EΨHΨ=EΨ is composed of three components, viz., Hamiltonian HH, wave function ΨΨ, and property E(λ)E(λ), each of which is confronted with fundamental issues in the relativistic regime, e.g., (1) What is the most appropriate relativistic many-body Hamiltonian? How to solve the resulting equation? (2) How does the relativistic wave function behave at the coalescence of two electrons? How to do relativistic explicit correlation? (3) How to formulate relativistic properties properly?, to name just a few. It is shown here that the charge-conjugated contraction of Fermion operators, dictated by the charge conjugation symmetry, allows for a bottom-up construction of a relativistic Hamiltonian that is in line with the principles of quantum electrodynamics (QED). Various approximate but accurate forms of the Hamiltonian can be obtained based entirely on physical arguments. In particular, the exact two-component Hamiltonians can be formulated in a general way to cast electric and magnetic fields, as well as electron self-energy and vacuum polarization, into a unified framework. While such algebraic two-component Hamiltonians are incompatible with explicit correlation, four-component relativistic explicitly correlated approaches can indeed be made fully parallel to the nonrelativistic counterparts by virtue of the ‘extended no-pair projection’ and the coalescence conditions. These findings open up new avenues for future developments of relativistic molecular quantum mechanics. In particular, ‘molecular QED’ will soon become an active and exciting field.
Keywords:Quantum electrodynamics  Virtual pair effects  Electron self-energy  Electron vacuum polarization  Charge conjugation symmetry  Charge-conjugated contraction  No-pair approximation  Relativistic Hamiltonians  Quasi-four-component  Exact two-component  Relativistic wave functions  Relativistic coalescence conditions  Relativistic explicit correlations  Relativistic theory of nuclear magnetic resonance  Relativistic theory of nuclear spin-rotation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号