首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A one-dimensional moving grid solution for the coupled non-linear equations governing multiphase flow in porous media. 1: Model development
Authors:Amir Gamliel  Linda M Abriola
Abstract:A straightforward moving grid finite element method is developed to solve the one-dimensional coupled system of non-linear partial differential equations (PDEs) governing two- and three-phase flow in porous media. The method combines features from a number of self-adaptive grid techniques. These techniques are the equidistribution, the moving grid finite element and the local grid refinement/coarsening methods. Two equidistribution criteria, based on solution gradient and curvature, are employed and nodal distributions are computed iterativcly. Using the developed approach, an intermingle-free nodal distribution is guaranteed. The method involves examination of a single representative gradient to facilitate the application of moving grid algorithms to solve a non-linear coupled set of PDEs and includes a feature to limit mass balance error during nodal redistribution. The finite element part of the developed algorithm is verified against an existing finite difference model. A numerical simulation example involving a single-front two-phase flow problem is presented to illustrate model performance. Additional simulation examples are given in Part 2 of this paper. These examples include single and double moving fronts in two- and three-phase flow systems incorporating source/sink terms. Simulation sensitivity to the moving grid parameters is also explored in Part 2.
Keywords:Partial differential equations  Non-linear equations  Coupled system  Numerical methods  Finite elements  Adaptive grid  Flow in porous media  Groundwater contamination  Multiphase flow  Immiscible flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号