首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unified symmetric finite element and boundary integral variational coupling methods for linear fluid–structure interaction
Authors:Xiaogang Zeng  Jacobo Bielak  Richard C Maccamy
Abstract:This article concerns the development of energy-based variational formulations and their corresponding finite element–boundary element Rayleigh–Ritz approximations for solving the time-harmonic vibration and scattering problem of an inhomogeneous penetrable fluid or solid object immersed in a compressible, inviscid, homogeneous fluid. The resulting coupled finite element and boundary integral methods (FEM-BEM) have the following attractive features: (1) Separate direct and complementary variational principles lead naturally to several alternative structure variable and fluid variable methodologies. (2) The solution in the exterior region is represented by a combined single- and double-layer potential which ensures the validity of the methods for all wave numbers; even though this representation introduces hypersingular integrals, for actual computations the hypersingular operator may be rewritten in terms of single-layer potentials, which can be integrated by standard techniques. (3) Since the discretized equations for the interior region and for the boundary are derived from the first variation of bilinear functionals the resulting algebraic systems of equations are always symmetric. In addition, the transition conditions across the interface are natural. This allows one to approximate the solutions within the interior and exterior regions independently, without imposing any boundary constraints.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号