首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On closure schemes for polynomial chaos expansions of stochastic differential equations
Institution:  a US Naval Research Laboratory, Washington, DC, USA
Abstract:The propagation of waves in a medium having random inhomogeneities is studied using polynomial chaos (PC) expansions, wherein environmental variability is described by a spectral representation of a stochastic process and the wave field is represented by an expansion in orthogonal random polynomials of the spectral components. A different derivation of this expansion is given using functional methods, resulting in a smaller set of equations determining the expansion coefficients, also derived by others. The connection with the PC expansion is new and provides insight into different approximation schemes for the expansion, which is in the correlation function, rather than the random variables. This separates the approximation to the wave function and the closure of the coupled equations (for approximating the chaos coefficients), allowing for approximation schemes other than the usual PC truncation, e.g. by an extended Markov approximation. For small correlation lengths of the medium, low-order PC approximations provide accurate coefficients of any order. This is different from the usual PC approximation, where, for example, the mean field might be well approximated while the wave function (which includes other coefficients) would not be. These ideas are illustrated in a geometrical optics problem for a medium with a simple correlation function.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号