首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acoustic properties of Kel F-800 copolymer up to 85 GPa
Authors:Ari S Benjamin  Muhtar Ahart  Stephen A Gramsch  Lewis L Stevens  E Bruce Orler  Dana M Dattelbaum  Russell J Hemley
Institution:Department of Physics, Williams College, Thompson Physics Laboratory, 33 Lab Campus Drive, Williamstown, Massachusetts 01267, USA.
Abstract:Acoustic properties of the fluorinated copolymer Kel F-800 were determined with Brillouin spectroscopy up to pressures of 85 GPa at 300 K. This research addresses outstanding issues in high-pressure polymer behavior, as to date the acoustic properties and equation of state of any polymer have not been determined above 20 GPa. We observed both longitudinal and transverse modes in all pressure domains, allowing us to calculate the C(11) and C(12) moduli, bulk, shear, and Young's moduli, and the density of Kel F-800 as a function of pressure. We found the behavior of the polymer with respect to all parameters to change drastically with pressure. As a result, we find that the data are best understood when split into two pressure regimes. At low pressures (less than ~5 GPa), analysis of the room temperature isotherm with a semi-empirical equation of state yielded a zero-pressure bulk modulus K(o) and its derivative K(0) (') of 12.8 ± 0.8 GPa and 9.6 ± 0.7, respectively. The same analysis for the higher pressure data yielded values for K(o) and K(0) (') of 34.9 ± 1.7 GPa and 5.1 ± 0.1, respectively. We discuss this significant difference in behavior with reference to the concept of effective free volume collapse.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号