首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reversible light switch for macrocycle mobility in a DNA rotaxane
Authors:Finn Lohmann  Damian Ackermann  Michael Famulok
Institution:LIMES Institute, Chemical Biology & Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
Abstract:A recent trend in DNA nanotechnology consists of the assembly of architectures with dynamic properties that can be regulated by employing external stimuli. Reversible processes are important for implementing molecular motion into DNA architectures as they allow for the regeneration of the original state. Here we describe two different approaches for the reversible switching of a double-stranded DNA rotaxane architecture from a stationary pseudorotaxane mode into a state with movable components. Both states only marginally differ in their respective topologies but their mechanical properties are fundamentally different. In the two approaches, the switching operation is based on strand-displacement reactions. One of them employs toehold-extended oligodeoxynucleotides whereas in the other one the switching is achieved by light-irradiation. In both cases, multiple back and forth switching between the stationary and the mobile states was achieved in nearly quantitative fashion. The ability to reversibly operate mechanical motion in an interlocked DNA nanostructure opens exciting new avenues in DNA nanotechnology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号