首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parametric plate-bridge dynamic filter model of violin radiativity
Authors:George Bissinger
Institution:East Carolina University, Greenville, North Carolina 27858, USA. bissingerg@ecu.edu
Abstract:A hybrid, deterministic-statistical, parametric "dynamic filter" model of the violin's radiativity profile characterized by an averaged-over-sphere, mean-square radiativity (R(ω)(2))] is developed based on the premise that acoustic radiation depends on (1) how strongly it vibrates characterized by the averaged-over-corpus, mean-square mobility (Y(ω)(2))] and (2) how effectively these vibrations are turned into sound, characterized by the radiation efficiency, which is proportional to (R(ω)(2))/(Y(ω)(2)). Two plate mode frequencies were used to compute 1st corpus bending mode frequencies using empirical trend lines; these corpus bending modes in turn drive cavity volume flows to excite the two lowest cavity modes A0 and A1. All widely-separated, strongly-radiating corpus and cavity modes in the low frequency deterministic region are then parameterized in a dual-Helmholtz resonator model. Mid-high frequency statistical regions are parameterized with the aid of a distributed-excitation statistical mobility function (no bridge) to help extract bridge filter effects associated with (a) bridge rocking mode frequency changes and (b) bridge-corpus interactions from 14-violin-average, excited-via-bridge (Y(ω)(2)) and (R(ω)(2)). Deterministic-statistical regions are rejoined at ~630 Hz in a mobility-radiativity "trough" where all violin quality classes had a common radiativity. Simulations indicate that typical plate tuning has a significantly weaker effect on radiativity profile trends than bridge tuning.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号