首页 | 本学科首页   官方微博 | 高级检索  
     


Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube-polyethylene composite system
Authors:Qingbin Zheng  Dan Xia  Keyou Yan  Qun Li
Affiliation:a College of Physics Science and Technology, China University of Petroleum, Dongying, Shandong 257061, People’s Republic of China
b Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
Abstract:In this study, the non-covalent association of single-walled nanotube (SWNT) with polyethylene (PE) molecule and the influence of sidewall modification on the interfacial bonding between the SWNTs and polymer were investigated using molecular mechanics (MM) and molecular dynamics (MD) simulations. The model of interaction between the initially separated PE and SWNT fragments, which can be either wrapping or filling, was computed. The possible extension of polymers wrapping or filling SWNTs can be used to structurally bridge the SWNTs and polymers to significantly improve the load transfer between them when SWNTs are used to produce nanocomposites. The interfacial bonding characteristics between the single-walled nanotubes, on which -COOH, -CONH2, -C6H11, or -C6H5 groups have been chemically attached, and the polymer matrix were also investigated by performing pullout simulations. The results show that appropriate functionalization of nanotubes at low densities of functionalized carbon atoms drastically increase their interfacial bonding and shear stress between the nanotubes and the polymer matrix, where chemisorption with -C6H5 groups to as little as 5.0% of the nanotube carbon atoms increases the shear stress by about 1700%. Furthermore, this suggests the possibility to use functionalized nanotubes to effectively reinforce other kinds of polymer-based materials as well.
Keywords:81.05.Tp
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号