首页 | 本学科首页   官方微博 | 高级检索  
     


Collision-induced dissociation of uracil and its derivatives
Authors:Chad C. Nelson  James A. McCloskey
Affiliation:1. Department of Medicinal Chemistry, Skaggs Hall, University of Utah, 84112, Salt Lake City, UT, USA
Abstract:The collision-induced dissociation of protonated uracil has been studied by tandem mass spectrometry using models extensively labeled with stable isotopes, and derivatives of the kinds found in nucleic acids. Following collisional activation at 30 eV translational energy, protonated uracil dissociates through two principal pathways which do not occur in electron ionization mass spectra: (1) elimination of NH3 almost entirely from N-3, followed by loss of CO from C-4, 04; (2) loss of H2O, equally from 02 and 04. Elimination of HNCO, also the principal dissociation process from odd-electron molecular ions, proceeds primarily by loss of N-3, C-Z, O2 and 10% from N-l, C-Z, 02. Several secondary dissociation products are formed with quantitative site specificity of skeletal atoms: C,HO+ (4-C0, C-5, C-6); H2CN+ (N-l, C-6); C2H2+ (N-l, C-5, C-6). First-step dissociation reactions are interpreted in terms of pyrimidine ring opening at likely sites of protonation after collisional activation of MH+. Collision-induced dissociation mass spectra of uracils with structural themes common to nucleic acids (methylation, replacement of 0 by S, C-5 substitution) follow analogous reaction paths which permit assignment of sites of substitution, and exhibit ion abundance changes attributed to differences in substituent basicity and electron density.
Keywords:
本文献已被 ScienceDirect SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号