首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inhomogeneous Double Optical Gating of High-Intensity Isolated Attosecond Pulse Generation in Crossed Metal Nanostructures
Authors:Liqiang Feng  Katheryn Liu  April Y Feng
Institution:1.Laboratory of Modern Physics,Liaoning University of Technology,Jinzhou,China;2.Institute of Physics,Tarbiat Modares University,Tehran,Iran;3.Department of Physics,Queen’s University of Belfast,Belfast,UK
Abstract:We propose and investigate an effective method for obtaining high-energy and high-intensity isolated attosecond pulses (IAPs) using the inhomogeneous double optical gating (DOG) technology in specifically designed metal nanostructures. First, using the homogeneous mid-infrared DOG technology modulated by a linearly near-infrared field, we obtain a harmonic yield of 2.5 orders of magnitudes higher than that from the single polarization gating (PG) technology. Further, introducing the crossed metal nanostructures along the driven and gating components, we can extend not only the harmonic cutoff but also enhance the harmonic yield attributed to the plasmonic field enhancement near the vicinity of metal nanostructures. As a result, we find a single harmonic plateau with smaller modulations. The supercontinuum is not very sensitive to the pulse duration of the near-infrared field, and the harmonic yields can be further enhanced with increase in the pulse intensity of the near-infrared field, showing a 108 eV supercontinuum with an intensity enhancement of 4 orders of magnitudes. Finally, by superposing the selected harmonics from the inhomogeneous DOG scheme, we obtain a 33 as SAP with an intensity increase of 4 orders of magnitudes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号