首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular dynamics simulations for water and ions in protein crystals
Authors:Hu Zhongqiao  Jiang Jianwen
Affiliation:Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
Abstract:The spatial and temporal properties of water and ions in bionanoporous materials-protein crystals-have been investigated using molecular dynamics simulations. Three protein crystals are considered systematically with different morphologies and chemical topologies: tetragonal lysozyme, orthorhombic lysozyme, and tetragonal thermolysin. It is found that the thermal fluctuations of C(alpha) atoms in the secondary structures of protein molecules are relatively weak due to hydrogen bonding. The solvent-accessible surface area per residue is nearly identical in the three protein crystals; the hydrophobic and hydrophilic residues in each crystal possess approximately the same solvent-accessible surface area. Water distributes heterogeneously and has different local structures within the biological nanopores of the three protein crystals. The mobility of water and ions in the crystals is enhanced as the porosity increases and also by the fluctuations of protein atoms particularly in the two lysozyme crystals. Anisotropic diffusion is found preferentially along the pore axis, as experimentally observed. The anisotropy of the three crystals increases in the order: tetragonal thermolysin < tetragonal lysozyme < orthorhombic lysozyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号