首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear analysis of compressed elastic thin films on elastic substrates: From wrinkling to buckle-delamination
Affiliation:1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, and Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China;2. Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712, USA
Abstract:Nonlinear buckling of elastic thin films on compliant substrates is studied by modeling and simulations to reveal the roles of pre-strain, elastic modulus ratio, and interfacial properties in morphological transition from wrinkles to buckle-delamination blisters. The model integrates an interfacial cohesive zone model with the Föppl–von Kármán plate theory and Green function method within the general framework of energy minimization. A kinetics approach is developed for numerical simulations. Subject to a uniaxial pre-strain, the numerical simulations confirm the analytically predicted critical conditions for onset of wrinkling and wrinkle-induced delamination, with which a phase diagram is constructed. It is found that, with increasing pre-strain, the equilibrium configuration evolves from flat to wrinkles, to concomitant wrinkles and buckle-delamination, and to an array of parallel straight blisters. The height and width of the buckle-delamination blisters can be approximately described by a set of scaling laws with respect to the pre-strain and interfacial toughness. Subject to an equi-biaxial pre-strain, the critical conditions are determined numerically to construct a similar phase diagram for the buckling modes. Moreover, by varying the pre-strain, modulus ratio, and interfacial toughness, a rich variety of equilibrium configurations are simulated, including straight blisters, and network blisters with or without wrinkles. These results provide considerable insight into diverse surface patterns in layered material systems as a result of the mechanical interactions between the film and the substrate through their interface, which suggests potential control parameters for designing specific surface patterns.
Keywords:Thin film  Buckling  Delamination  Interface
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号