首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Size dependent response of large shell elements under in-plane tensile loading
Institution:Aalto University, School of Engineering, Department of Applied Mechanics, P.O. Box 12200, FIN-00076 Aalto, Finland
Abstract:Large-scale thin-walled structures with a low weight-to-stiffness ratio provide the means for cost and energy efficiency in structural design. However, the design of such structures for crash and impact resistance requires reliable FE simulations. Large shell elements are used in those simulations. Simulations require the knowledge of the true stress–strain response of the material until fracture initiation. Because of the size effects, local material relation determined with experiments is not applicable to large shell elements. Therefore, a numerical method is outlined to determine the effect of element size on the macroscopic response of large structural shell elements until fracture initiation. Macroscopic response is determined by introducing averaging unit into the numerical model over which volume averaged equivalent stress and plastic strain are evaluated. Three different stress states are considered in this investigation: uniaxial, plane strain and equi-biaxial tension. The results demonstrate that fracture strain is highly sensitive to size effects in uniaxial tension whereas in plane strain or equi-biaxial tension size effects are much weaker. In uniaxial and plane strain tension the fracture strain for large shell elements approaches the Swift diffuse necking condition.
Keywords:Size effects  Fracture initiation  Large shell elements  Finite elements  Softening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号