首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanics of adhesive contact at the nanoscale: The effect of surface stress
Institution:1. LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, 100871, China;2. Department of Engineering Mechanics, Tsinghua University, 100084, China
Abstract:At small length scales, the adhesion and surface effect are of great significance, both of which play important roles in the contact between two elastic solids. In this study, the classical Johnson–Kendall–Roberts (JKR) adhesive contact theory is generalized to the nanoscale at which the surface effect is considered. The influence of the surface stress on the JKR adhesive contact is investigated by employing the non-classical Boussinesq fundamental solutions. It is found that, compared with the classical theory, the pull-off force increases while the critical contact radius decreases as a result of the surface effect. Numerical results show that a relative error of 10% can be introduced in the pull-off force when the indenter radius is less than 20 nm. A detailed theoretical analysis of this interesting phenomenon is presented based on dimensional analysis, and two scaling laws for the adhesive contact at the nanoscale are constructed. These two new scaling laws reveal that the pull-off force is relevant to the elastic properties of the bulk materials, which is different from the classical adhesive contact theory. The present work is promising for the engineering applications in micro-electro-mechanical systems (MEMS) and nano-intelligent devices.
Keywords:Adhesive contact  Surface effect  Pull-off force  Dimensional analysis  Scaling laws
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号