首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical and Numerical Considerations of Backus-Average Product Approximation
Authors:Len Bos  Tomasz Danek  Michael A. Slawinski  Theodore Stanoev
Affiliation:1.Dipartimento di Informatica,Università di Verona,Verona,Italy;2.Department of Geoinformatics and Applied Computer Science,AGH—University of Science and Technology,Kraków,Poland;3.Department of Earth Sciences,Memorial University of Newfoundland,St. John’s,Canada
Abstract:In this paper, we examine the applicability of the approximation, (overline{f g}approx overline{f},overline{g}), within Backus (J. Geophys. Res. 67(11):4427–4440, 1962) averaging. This approximation is a crucial step in the method proposed by Backus (J. Geophys. Res. 67(11):4427–4440, 1962), which is widely used in studying wave propagation in layered Hookean solids. According to this approximation, the average of the product of a rapidly varying function and a slowly varying function is approximately equal to the product of the averages of those two functions.Considering that the rapidly varying function represents the mechanical properties of layers, we express it as a step function. The slowly varying function is continuous, since it represents the components of the stress or strain tensors. In this paper, beyond the upper bound of the error for that approximation, which is formulated by Bos et al. (J. Elast. 127:179–196, 2017), we provide a statistical analysis of the approximation by allowing the function values to be sampled from general distributions.Even though, according to the upper bound, Backus (J. Geophys. Res. 67(11):4427–4440, 1962) averaging might not appear as a viable approach, we show that—for cases representative of physical scenarios modelled by such an averaging—the approximation is typically quite good. We identify the cases for which there can be a deterioration in its efficacy.In particular, we examine a special case for which the approximation results in spurious values. However, such a case—though physically realizable—is not likely to appear in seismology, where Backus (J. Geophys. Res. 67(11):4427–4440, 1962) averaging is commonly used. Yet, such values might occur in material sciences, in general, for which Backus (J. Geophys. Res. 67(11):4427–4440, 1962) averaging is also considered.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号