首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite shear strain behavior of a crosslinking polydimethylsiloxane near its gel point
Authors:S K Venkataraman  Prof H H Winter
Institution:(1) Department of Chemical Engineering, University of Massachusetts, 01003 Amherst, MA, USA
Abstract:A power law distribution of relaxation times, large normal stress differences, and physical rupture of molecular network strands dominate the shear behavior of polymers at the gel point (critical gels). This is shown in a series of well-defined experiments with increasing magnitude of shear on a model-network polymer system consisting of a linear, telechelic, vinyl-terminated poly-dimethylsiloxane (PDMS) and a four-functional siloxane crosslinker. Stable samples were prepared by stopping the crosslinking reaction at different extents of reaction in the vicinity of the gel point (GP). The Gel Equation has been shown to be valid up to strains of about 2 when using a finite strain tensor. Larger strains have been found to disrupt the network structure of the crosslinking polymer, and introduce a mechanical delay to the gel point. A sample that was crosslinked beyond the gel point (p>p c ) can be reduced from the solid state to a critical gel, or even to a viscoelastic liquid, depending on the magnitude of shear strain. As a consequence, the relaxation exponent of a critical gel created under the influence of shear is less than that of a quiescently crosslinked critical gel.
Keywords:Gelpoint  gelequation  polydimethylsiloxane  shear modification
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号