Low-temperature FTIR spectra and hydrogen bonds in polycrystalline adenosine and uridine |
| |
Authors: | Rozenberg M Jung C Shoham G |
| |
Affiliation: | Department of Inorganic and Analytical Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel. markroz@chem.ch.huji.ac.il |
| |
Abstract: | FTIR spectra of polycrystalline samples of adenosine and uridine, pure and containing small (<10%) quantity of N(O)H or N(O)D groups, were measured in KBr pellets from 4000 to 400 cm(-1) at temperatures from 300 to 20 K. For the first time, the bands of narrow isotopically decoupled proton stretching vibration nu1 mode of NH- and OH- groups were found and assigned to ordered hydrogen bonds according to crystal structural data for both nucleosides. The FTIR adenosine spectra in the out-of-plane bending proton nu4 mode range (lower than 1000 cm(-1)) of N(O)H groups revealed at low temperature at least twice more bands, than in the nu1 range, which are influenced by isotopic exchange and (or) cooling. Almost all of them have their counterparts in the N(O)D substance spectrum with an isotopic frequency ratio of 1.30-1.40. These bands were assigned to the differently H-bound disordered NH and OH protons, which could not be seen with crystal structural methods. The energy and length of different H-bonds were estimated from peak positions of both mode bands (as the red shift of nu1 or blue shift of nu4 relatively free molecules) with well-established empirical correlations between spectral, thermodynamic and structural parameters of hydrogen bonds. The results were compared with independent experimental data. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|