首页 | 本学科首页   官方微博 | 高级检索  
     检索      

考虑晶体滑移面分解正应力的细观损伤模型
引用本文:赵伯宇,胡伟平,孟庆春.考虑晶体滑移面分解正应力的细观损伤模型[J].力学学报,2021,53(5):1355-1366.
作者姓名:赵伯宇  胡伟平  孟庆春
作者单位:北京航空航天大学航空科学与工程学院,北京100191;中国工程物理研究院机械制造工艺研究所,四川绵阳621900;北京航空航天大学航空科学与工程学院,北京100191
摘    要:材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源,从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程.本文基于晶体塑性理论,从滑移系的受力和变形出发研究材料的细观损伤,建立了考虑滑移面分解正应力的细观损伤模型,为晶体材料解理断裂的分析提供了新方法.首先,在晶体弹塑性变形构型的基础上引入损伤变形梯度...

关 键 词:细观损伤  晶体塑性  分解正应力  解理断裂  数值方法
收稿时间:2020-12-29

MICROSCOPIC DAMAGE MODEL CONSIDERING THE RESOLVED NORMAL STRESS ON CRYSTAL SLIP PLANE
Institution:*School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China??Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
Abstract:Studies show that the macroscopic failure of structure results from the microscopic damage within materials, such as cleavage and slip plane decohesion. Therefore, it is helpful to understand the deformation and failure process of materials by studying the damage evolution at micro-scale. Based on the crystal plasticity theory, the microscopic damage in material is studied by analyzing the stress and deformation of slip system, and the microscopic damage model is proposed to consider the resolved normal stress on crystal slip plane. This study provides a new approach for the analysis of cleavage fracture of crystalline materials. First, the gradient tensor of damage deformation is introduced in addition to the crystal elastic-plastic deformation configuration. The constitutive equation with damage energy dissipation is established from the deformation kinematics analysis, and the plastic flow equation and the damage evolution equation are derived. Second, the numerical method is established including the updating algorithm of stress and state variables and the derivation of Jacobian matrix. After that, the single crystal copper with $100]$ orientation is studied as an example. Through comparing the results obtained by finite element computation and by experimental test, the 11 material microscopic parameters are calibrated using the particle swarm optimization algorithm. Finally, the proposed microscopic damage model is applied to the simulation of RVE under uniaxial tension. The curve of stress versus strain considering the damage effect is obtained, and the development of plastic flow and damage evolution are analyzed. The results show that the proposed model is able to compute the damage accumulation of materials and reasonably reflect the microscopic damage mechanism of crystalline materials. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《力学学报》浏览原始摘要信息
点击此处可从《力学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号