首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scale-up of microbubble dispersion generator for aerobic fermentation
Authors:Hensirisak P  Parasukulsatid P  Agblevor F A  Cundiff J S  Velander W H
Institution:(1) Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA;(2) Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA
Abstract:A laboratory-scale microbubble dispersion (MBD) generator was shown to improve oxygen transfer to aerobic microorganisms when coupled to the conventional air-sparger. However, the process was not demonstrated on a large scale to prove its practical application. We investigated the scale-up of a spinning-disk MBD generator for the aerobic fermentation of Saccharomyces cerevisiae (baker’s yeast). A 1-L spinning-disk MBD generator was used to supply air for 1- and 50-L working volume fermentation of baker’s yeast. For the two levels investigated, the MBD generator maintained an adequate supply of surfactant-stabilized air microbubbles to the microorganisms at a relatively low agitation rate (150 rpm). There was a significant improvement in oxygen transfer to the microorganism relative to the conventional sparger. The volumetric mass transfer coefficient, k L a, for the MBD system at 150 rpm was 765 h−1 compared to 937 h−1 for the conventional sparger at 500 rpm. It is plausible to surmise that fermentation using larger working volumes may further improve the k L a values and the dissolved oxygen (DO) levels because of longer hold-up times and, consequently, improve cell growth. There was no statistically significant difference between the cell mass yield on substrate (0.43 g/g) under the MBD regime at an agitation rate of 150 rpm and that achieved for the conventional air-sparged system (0.53 g/g) at an agitation rate of 500 rpm. The total power consumption per unit volume of broth in the 50-L conventional air-sparged system was threefold that for the MBD unit for a similar product yield. Practical application of the MBD technology can be expected to reduce power consumption and therefore operating costs for aerobic fermentation.
Keywords:Microbubble  fermentation  aeration            Saccharomyces cerevisiae            power consumption
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号