首页 | 本学科首页   官方微博 | 高级检索  
     


Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization
Authors:Li Wenwen  Gao Chao
Affiliation:College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
Abstract:Carbon nanotubes were used to induce the formation of spherical vaterite crystals and stabilize the metastable crystals in the biomimetic mineralization of CaCO3 for the first time. It was found that carboxyl-functionalized multiwalled/single-walled carbon nanotubes (MWNT-COOH/SWNT-COOH) can favor the formation of spherical vaterite crystals and stabilize the crystals. In the presence of CNT-COOH, CaCO3 vaterite crystals with diameters of ca. 1-7 microm coated and embedded with the carbon nanotubes (CNTs) were obtained in 30 min by adding Na2CO3 aqueous solution to the aqueous solution of CaCl2. The spherical vaterite crystals covered by the carboxylic CNTs can exist stably in water for a week. Carboxylic-polymer-functionalized CNTs can also facilitate the formation of spherical vaterite crystals, whereas the formed crystals completely transformed into thermodynamically stable calcite crystals in water within 10 h. "Offline" TEM observations of the mineralization process of CaCO3 in the presence of CNT-COOH or pristine CNTs revealed the stability mechanism of vaterite crystals with carboxylic CNTs. The crystals nucleate at the carboxyl groups of CNT-COOH, grow around the CNTs, and finally form spherical vaterite crystals embedded and covered by the CNTs. The strong interaction between CNT-COOH and crystals together with the strong mechanical strength of CNTs stabilizes the formed vaterite crystals and makes them difficult to dissolve in water. These findings announce that nanomaterials could strongly influence the mineralization of biomineralization matters, which may help us prepare novel biomaterials and bionanomaterials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号