首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Viscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis
Authors:Mano João F
Institution:3B's Research Group--Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, Braga, Portugal. jmano@dep.uminho.pt
Abstract:Dynamic mechanical analysis, DMA, is an adequate technique for characterizing the mechanical features of biomaterials, as one can use test conditions that can more closely simulate the physiological environments in which they are going to be applied. In this work it was possible to perform different tests on chitosan membranes using low/moderate hydration levels, as well in completely wet conditions. In the first case the data obtained at different relative humidity environments were rationalized under a time-humidity superposition principle, where a master curve for the storage modulus could be obtained along a wide range of frequencies. The temperature dependence of the shift factors exhibited a curvature opposite to that expected by the WLF equation, and is consistent with relaxation dynamics behavior below the glass transition. Temperature scans above room temperature in both dry and wet conditions did not reveal strong variations in the viscoelastic properties. It was possible to follow in real time the water uptake in an initially-dry membrane. During the initial strong and fast decrease of the storage modulus the loss factor exhibited a peak that should correspond to the occurrence of the glass transition resulting from the plasticization effect of water. Upon equilibration the loss factor reached similar values as for the dry material (tandelta approximately equal to 0.5). The viscoelastic characterization reported in this work for chitosan may be useful in the use of such material for a variety of biomedical applications.
Keywords:biomaterials  chitosan  complex modulus  viscoelastic properties
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号