首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical predictions of 31p NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts
Authors:Zheng Anmin  Zhang Hailu  Lu Xin  Liu Shang-Bin  Deng Feng
Institution:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China.
Abstract:The 31P NMR chemical shifts of adsorbed trimethylphosphine oxide (TMPO) and the configurations of the corresponding TMPOH+ complexes on Br?nsted acid sites with varying acid strengths in modeled zeolites have been predicted theoretically by means of density functional theory (DFT) quantum chemical calculations. The configuration of each TMPOH+ complex was optimized at the PW91/DNP level based on an 8T cluster model, whereas the 31P chemical shifts were calculated with the gauge including atomic orbital (GIAO) approach at both the HF/TZVP and MP2/TZVP levels. A linear correlation between the 31P chemical shift of adsorbed TMPO and the proton affinity of the solid acids was observed, and a threshold for superacidity (86 ppm) was determined. This threshold for superacidity was also confirmed by comparative investigations on other superacid systems, such as carborane acid and heteropolyoxometalate H3PW12O40. In conjunction with the strong correlation between the MP2 and the HF 31P isotropic shifts, the 8T cluster model was extended to more sophisticated models (up to 72T) that are not readily tractable at the GIAO-MP2 level, and a 31P chemical shift of 86 ppm was determined for TMPO adsorbed on zeolite H-ZSM-5, which is in good agreement with the NMR experimental data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号