首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reacting polymers with highly correlated initial conditions
Authors:OV Bychuk  B O'Shaughnessy  NJ Turro
Institution:(1) Department of Chemical Engineering, Columbia University, New York, NY 10027, USA, US;(2) Department of Chemistry, Columbia University, New York, NY 10027, USA, US
Abstract:We propose and theoretically study an experiment designed to measure short-time polymer reaction kinetics in melts or dilute solutions. The photolysis of groups centrally located along chain backbones, one group per chain, creates pairs of spatially highly correlated macroradicals. We calculate time-dependent rate coefficients κ(t) governing their first-order recombination kinetics, which are novel on account of the far-from-equilibrium initial conditions. In dilute solutions (good solvents) reaction kinetics are intrinsically weak, despite the highly reactive radical groups involved. This leads to a generalised mean-field kinetics in which the rate of radical density decay - ∼S(t), where S(t) ∼t - (1 + g/3) is the equilibrium return probability for 2 reactive groups, given initial contact. Here g≈ 0.27 is the correlation hole exponent for self-avoiding chain ends. For times beyond the longest coil relaxation time τ, - ∼S(t) remains true, but center of gravity coil diffusion takes over with rms displacement of reactive groups x(t) ∼t 1/2 and S(t) ∼ 1/x 3(t). At the shortest times ( t 10-6s), recombination is inhibited due to spin selection rules and we find ∼tS(t). In melts, kinetics are intrinsically diffusion-controlled, leading to entirely different rate laws. During the regime limited by spin selection rules, the density of radicals decays linearly, n(0) - n(t) ∼t. At longer times the standard result - ∼d 3(t)/d (for randomly distributed ends) is replaced by ∼d2x 3(t)/d 2 for these correlated initial conditions. The long-time behavior, t > τ, has the same scaling form in time as for dilute solutions. Received 18 May 2000
Keywords:PACS  82  35  +t Polymer reactions and polymerization –  82  40  -g Chemical kinetics and reactions: Special regimes and techniques
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号