首页 | 本学科首页   官方微博 | 高级检索  
     


Characterizing Combinatorial Geometries by Numerical Invariants
Authors:Joseph E. Bonin  William P. Miller  
Affiliation:a Department of Mathematics, The George Washington University, Washington DC, 20052, U.S.A.;b Department of Mathematics, Computer Science, and Physics, Rockhurst College, Kansas City, MO 64110, U.S.A.
Abstract:We show that the projective geometry PG(r − 1,q ) for r & 3 is the only rank- r(combinatorial) geometry with (qr − 1) / (q − 1) points in which all lines have at least q + 1 points. For r = 3, these numerical invariants do not distinguish between projective planes of the same order, but they do distinguish projective planes from other rank-3 geometries. We give similar characterizations of affine geometries. In the core of the paper, we investigate the extent to which partition lattices and, more generally, Dowling lattices are characterized by similar information about their flats of small rank. We apply our results to characterizations of affine geometries, partition lattices, and Dowling lattices by Tutte polynomials, and to matroid reconstruction. In particular, we show that any matroid with the same Tutte polynomial as a Dowling lattice is a Dowling lattice.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号