首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Symmetries and regular behavior of Hamiltonian systems
Authors:Kozlov Valeriy V
Institution:Department of Mathematics and Mechanics, M. V. Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119899, Russia.
Abstract:The behavior of the phase trajectories of the Hamilton equations is commonly classified as regular and chaotic. Regularity is usually related to the condition for complete integrability, i.e., a Hamiltonian system with n degrees of freedom has n independent integrals in involution. If at the same time the simultaneous integral manifolds are compact, the solutions of the Hamilton equations are quasiperiodic. In particular, the entropy of the Hamiltonian phase flow of a completely integrable system is zero. It is found that there is a broader class of Hamiltonian systems that do not show signs of chaotic behavior. These are systems that allow n commuting "Lagrangian" vector fields, i.e., the symplectic 2-form on each pair of such fields is zero. They include, in particular, Hamiltonian systems with multivalued integrals. (c) 1996 American Institute of Physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号