首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the chaotic nature of turbulence observed in benchmark analysis of nonlinear plasma simulation
Authors:Yagi Masatoshi  Itoh Sanae-I  Itoh Kimitaka  Fukuyama Atsushi
Institution:Research Institute for Applied Mechanics, Kyushu University 87, Kasuga 816, Japan.
Abstract:Simulational results of two dissipative interchange turbulence (Rayleigh-Taylor-type instability with dissipation) models with the same physics are compared. The convective nonlinearity is the nonlinear mechanism in the models. They are shown to have different time evolutions in the nonlinear phase due to the different initial value which is attributed to the initial noise. In the first model (A), a single pressure representing the sum of the ion and electron components is used (one-fluid model). In the second model (B) the ion and electron components of the pressure fields are independently solved (two-fluid model). Both models become physically identical if we set ion and electron pressure fields to be equal in the model (B). The initial conditions only differ by the infinitesimally small initial noise due to the roundoff errors which comes from the finite difference but not the differentiation. This noise grows in accordance with the nonlinear development of the turbulence mode. Interaction with an intrinsic nonlinearity of the system makes the noise grow, whose contribution becomes almost the same magnitude of the fluctuation itself in the results. The instantaneous deviation shows the chaotic characteristics of the turbulence. (c) 1997 American Institute of Physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号