首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pseudo-spectral methods and linear instabilities in reaction-diffusion fronts
Authors:Jones Wesley B  O'Brien James J
Institution:Advanced Systems Division, Silicon Graphics Inc., Mountain View, California 94043-1389COAPS, Florida State University, Tallahassee, Florida 32306-3041.
Abstract:We explore the application of a pseudo-spectral Fourier method to a set of reaction-diffusion equations and compare it with a second-order finite difference method. The prototype cubic autocatalytic reaction-diffusion model as discussed by Gray and Scott Chem. Eng. Sci. 42, 307 (1987)] with a nonequilibrium constraint is adopted. In a spatial resolution study we find that the phase speeds of one-dimensional finite amplitude waves converge more rapidly for the spectral method than for the finite difference method. Furthermore, in two dimensions the symmetry preserving properties of the spectral method are shown to be superior to those of the finite difference method. In studies of plane/axisymmetric nonlinear waves a symmetry breaking linear instability is shown to occur and is one possible route for the formation of patterns from infinitesimal perturbations to finite amplitude waves in this set of reaction-diffusion equations. (c) 1996 American Institute of Physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号