首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bifurcations and traveling waves in a delayed partial differential equation
Authors:Rey Alejandro D  Mackey Michael C
Institution:Department of Chemical Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 2A7, CanadaDepartments of Physiology, Physics, and Mathematics, and Centre for Nonlinear Dynamics in Physiology and Medicine, McGill University, 3655 Drummond Street, Montreal H3G 1Y6, Canada.
Abstract:Here cell population dynamics in which there is simultaneous proliferation and maturation is considered. The resulting mathematical model is a nonlinear first-order partial differential equation for the cell density u(t,x) in which there is retardation in both temporal (t) and maturation variables (x), and contains three parameters. The solution behavior depends on the initial function varphi(x) and a three component parameter vector P=(delta,lambda,r). For strictly positive initial functions, varphi(0) greater, similar 0, there are three homogeneous solutions of biological (i.e., non-negative) importance: a trivial solution u(t) identical with 0, a positive stationary solution u(st), and a time periodic solution u(p)(t). For varphi(0)=0 there are a number of different solution types depending on P: the trivial solution u(t), a spatially inhomogeneous stationary solution u(nh)(x), a spatially homogeneous singular solution u(s), a traveling wave solution u(tw)(t,x), slow traveling waves u(stw)(t,x), and slow traveling chaotic waves u(scw)(t,x). The regions of parameter space in which these solutions exist and are locally stable are delineated and studied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号