首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum features of Brownian motors and stochastic resonance
Authors:Reimann Peter  Hanggi Peter
Institution:Universitat Augsburg, Memminger Str. 6, D-86135 Augsburg, Germany.
Abstract:We investigate quantum Brownian motion sustained transport in both, adiabatically rocked ratchet systems and quantum stochastic resonance (QSR). Above a characteristic crossover temperature T(0) tunneling events are rare; yet they can considerably enhance the quantum-noise-driven particle current and the amplification of signal output in comparison to their classical counterparts. Below T(0) tunneling prevails, thus yielding characteristic novel quantum transport phenomena. For example, upon approaching T=0 the quantum current in Brownian motors exhibits a tunneling-induced reversal, and tends to a finite limit, while the classical result approaches zero without such a change of sign. As a consequence, similar current inversions generated by quantum effects follow upon variation of the particle mass or of its friction coefficient. Likewise, in this latter regime of very low temperatures the tunneling dynamics becomes increasingly coherent, thus suppressing the semiclassically predicted QSR. Moreover, nonadiabatic driving may cause driving-induced coherences and quantized resonant transitions with no classical analog. (c) 1998 American Institute of Physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号