首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accuracy of Noninvasive in vivo Measurements of Photosensitizer Uptake Based on a Diffusion Model of Reflectance Spectroscopy
Authors:Robert A Weersink  Joseph E Hayward  Kevin R Diamond  Michael S Patterson
Institution:Hamilton Regional Cancer Centre and McMaster University, Hamilton, Ontario, Canada
Abstract:Abstract— This study compares the photosensitizer concentration measured noninvasively in vivo by diffuse reflectance spectroscopy with the results of postmortem tissue solubilization and fluorometric assay. The reflectance spectrometer consists of a fiber optic surface probe, spectrometer and charge-coupled device (CCD) array detector. The surface probe has eight detection fibers separated from the light source fiber by distances ranging from 0.85 to 10 mm. The imaging spectrometer disperses the light from each detector fiber onto the two-dimensional CCD array, while maintaining spatial separation of each individual spectrum. A single exposure of the CCD therefore captures the reflectance spectrum at eight distances and over a range of 300 nm. From the spectra, the tissue's optical scattering and absorption coefficients are determined using a diffusion model of light propagation. Changes in the tissue absorption are used to estimate the photosensitizer concentration. Normal New Zealand White rabbits were injected with aluminum phthalocyanine tetrasulfonate (AlPcS4) and probe measurements made 24 h after injection on the dorsal skin, on muscle after surgically turning the skin back and on liver. For skin, the noninvasive estimate is proportional to the true concentration but low by a factor of 3. Based on Monte Carlo modeling of multilayered systems, this underestimate is attributed to the layered structure of the skin and nonuniform AIPcS4 distribution. A comparison of the noninvasive concentration estimates to the postmortem assay results finds good agreement for liver tissue even though application of the diffusion model is not strictly justified.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号