首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancing Water Stability of Metal-Organic Frameworks via Phosphonate Monoester Linkers
Authors:Jared M Taylor  Ramanathan Vaidhyanathan  Simon S Iremonger  George K H Shimizu
Institution:Department of Chemistry, University of Calgary , Calgary, Alberta, Canada T2N 1N4.
Abstract:A new porous metal-organic framework (MOF), barium tetraethyl-1,3,6,8-pyrenetetraphosphonate (CALF-25), which contains a new phosphonate monoester ligand, was synthesized through a hydrothermal method. The MOF is a three-dimensional structure containing 4.6 ? × 3.9 ? rectangular one-dimensional pores lined with the ethyl ester groups from the ligand. The presence of the ethyl ester groups makes the pores hydrophobic in nature, as determined by the low heats of adsorption of CH(4), CO(2), and H(2)O (14.5, 23.9, and 45 kJ mol(-1), respectively) despite the polar and acidic barium phosphonate ester backbone. The ethyl ester groups within the pores also protect CALF-25 from decomposition by water vapor, with crystallinity and porosity being retained after exposure to harsh humid conditions (90% relative humidity at 353 K). The use of phosphonate esters as linkers for the construction of MOFs provides a method to protect hydrolytically susceptible coordination backbones through kinetic blocking.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号