首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculations of internal-wave-induced fluctuations in ocean-acoustic propagation
Authors:Flatté S M  Rovner G
Institution:Physics Department and Institute of Tectonics, University of California at Santa Cruz, 95064, USA.
Abstract:Variability in the ocean sound-speed field on time scales of a few hours and horizontal spatial scales of a few kilometers is often dominated by the random, anisotropic fluctuations caused by the internal-wave field. Results have been compiled from analytical approaches and from numerical simulations using the parabolic approximation into an efficient set of algorithms for calculating approximations to internal-wave effects on temporal and spatial coherences, coherent bandwidths, and regimes of acoustic fluctuation behavior. These approximate formulas account for the background, deterministic, sound-speed profile and the anisotropy of the internal-wave field, and they also allow for the incorporation of experimentally determined profiles of sound speed, buoyancy frequency, and sound-speed variance. The algorithms start from the geometrical-acoustics approximation, in which the field transmitted from a source can be described completely in terms of rays whose characteristics are determined by the sound speed as a function of position. Ordinary integrals along these rays provide approximations to acoustic-fluctuation quantities due to the statistical effects of internal waves, including diffraction. The results from the algorithms are compared with numerical simulations and with experimental results for long-range propagation in the deep ocean.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号