首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wavefunction stability analysis without analytical electronic Hessians: application to orbital-optimised second-order Møller–Plesset theory and VV10-containing density functionals
Authors:Shaama Mallikarjun Sharada  David Stück  Eric J Sundstrom  Alexis T Bell
Institution:1. Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA;2. Department of Chemistry, University of California, Berkeley, CA, USA;3. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Abstract:Wavefunction stability analysis is commonly applied to converged self-consistent field (SCF) solutions to verify whether the electronic energy is a local minimum with respect to second-order variations in the orbitals. By iterative diagonalisation, the procedure calculates the lowest eigenvalue of the stability matrix or electronic Hessian. However, analytical expressions for the electronic Hessian are unavailable for most advanced post-Hartree–Fock (HF) wave function methods and even some Kohn–Sham (KS) density functionals. To address such cases, we formulate the Hessian-vector product within the iterative diagonalisation procedure as a finite difference of the electronic gradient with respect to orbital perturbations in the direction of the vector. As a model application, following the lowest eigenvalue of the orbital-optimised second-order Møller–Plesset perturbation theory (OOMP2) Hessian during H2 dissociation reveals the surprising stability of the spin-restricted solution at all separations, with a second independent unrestricted solution. We show that a single stable solution can be recovered by using the regularised OOMP2 method (δ-OOMP2), which contains a level shift. Internal and external stability analyses are also performed for SCF solutions of a recently developed range-separated hybrid density functional, ωB97X-V, for which the analytical Hessian is not yet available due to the complexity of its long-range non-local VV10 correlation functional.
Keywords:quantum chemistry  stability analysis  density functional theory  Brueckner orbitals  orbital optimisation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号