首页 | 本学科首页   官方微博 | 高级检索  
     


Single-particle energies and density of states in density functional theory
Authors:H. van Aggelen
Affiliation:1. Department of Chemistry, Princeton University, Princeton, NJ, USA;2. Department of Inorganic and Physical Chemistry, Ghent University, Ghent, Belgium
Abstract:Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn– Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange– correlation functional has no dependence on the superfluid density. The Kohn– Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Keywords:density functional theory  orbital energies  bandgaps  ionisation potentials and electron affinities
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号