首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-Dimensional Shape Fitting in Linear Time
Authors:Email author" target="_blank">Sariel?Har-PeledEmail author  Email author" target="_blank">Kasturi R?VaradarajanEmail author
Institution:(1) Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Avenue, Urbana, IL 61801-2302, USA;(2) Department of Computer Science, University of Iowa, Iowa City, IA 52242-1419, USA
Abstract:Let $P$ be a set of $n$ points in $\Re^d$. The {\em radius} of a $k$-dimensional flat ${\cal F}$ with respect to $P$, which we denote by ${\cal RD}({\cal F},P)$, is defined to be $\max_{p \in P} \mathop{\rm dist}({\cal F},p)$, where $\mathop{\rm dist}({\cal F},p)$ denotes the Euclidean distance between $p$ and its projection onto ${\cal F}$. The $k$-flat radius of $P$, which we denote by ${R^{\rm opt}_k}(P)$, is the minimum, over all $k$-dimensional flats ${\cal F}$, of ${\cal RD}({\cal F},P)$. We consider the problem of computing ${R^{\rm opt}_k}(P)$ for a given set of points $P$. We are interested in the high-dimensional case where $d$ is a part of the input and not a constant. This problem is NP-hard even for $k = 1$. We present an algorithm that, given $P$ and a parameter $0 < \eps \leq 1$, returns a $k$-flat ${\cal F}$ such that ${\cal RD}({\cal F},P) \leq (1 + \eps) {R^{\rm opt}_k}(P)$. The algorithm runs in $O(nd C_{\eps,k})$ time, where $C_{\eps,k}$ is a constant that depends only on $\eps$ and $k$. Thus the algorithm runs in time linear in the size of the point set and is a substantial improvement over previous known algorithms, whose running time is of the order of $d n^{O(k/\eps^c)}$, where $c$ is an appropriate constant.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号