首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal
Authors:Wang L J  Peng Q  Li Q K  Shuai Z
Institution:Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, 100080 Beijing, People's Republic of China.
Abstract:We calculate the hole and electron mobilities in naphthalene crystal from 10 to 300 K within the framework of the Holstein-Peierls model coupled with first-principles density-functional-theory-projected tight-binding band structures. All the electron-phonon coupling constants, including both local and nonlocal parts for inter- and intramolecular vibrations, have been taken into considerations through density functional theory. The band-hopping crossover transition temperature for the electron transport in the c' axis is calculated to be around 23 K. We have identified a few high frequency intramolecular vibrations which are very important to the charge transport in naphthalene crystal due to their comparatively large electron-phonon coupling constants. However, their contributions to the temperature dependence of mobility are minor because of the small phonon occupations and small nonlocal coupling strengths. The low frequency intermolecular modes (longitudinal optical modes) are found to be the major contributions to the temperature dependent charge transfer properties in naphthalene crystal. Even though the calculated qualitative temperature dependence is in agreement with experiment, the predicted absolute mobility is about one to two orders of magnitude larger.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号