首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effective design of A-D-A small molecules for high performance organic solar cells via F atom substitution and thiophene bridge
Authors:Anwang He  Yuancheng Qin  Weili Dai  Dan Zhou  Jianping Zou
Institution:Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
Abstract:Three novel small molecules with acceptor-donor-acceptor (A-D-A) configuration, SBDT1, SBDT2 and SBDT3, where 4,8-bis(octyloxy)benzo1,2-b:4,5-b']dithiophene (BDT) as the electron-donating core connecting to thiophene-substituted benzothiadiazole (BT) as electron-withdrawing are reported. The effects of fluorine atoms on the photophysical properties by introducing different fluorine atoms into the benzothiadiazole unit were investigated. These SBDTs exhibit good thermal stability, excellent panchromatic absorption in solution and film. SBDT2 and SBDT3 with fluorine-substituted BT possess a relatively deeper the highest occupied molecular orbital (HOMO). These A-D-A type molecules were treated as donor and PC71BM as acceptor in bulk heterojunction (BHJ) small-molecule organic solar cells (SMOSCs). Among them, device based on SBDT2 gave the best device performance with a PCE of 5.06% with Jsc of 10.56 mA/cm2, Voc of 0.85 V, fill factor (FF) of 56.4%. These studies indicate that proper incorporation of fluorine atoms is an effective way to increase the efficiency of organic solar cells.
Keywords:A-D-A small molecule  Benzothiadiazole  Fluorination  Organic solar cells  
点击此处可从《中国化学快报》浏览原始摘要信息
点击此处可从《中国化学快报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号