首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and rheology of fiber-laden membranes via integration of nematodynamics and membranodynamics
Authors:Yogesh K. Murugesan  Alejandro D. Rey
Affiliation:1. Mathematik A, RWTH Aachen, 52056 Aachen, Germany;2. Mathematik D, RWTH Aachen, 52056 Aachen, Germany;1. Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea;2. Institute of Nanoscience and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea;1. I3N – CENIMAT, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT/UNL, 2829-516 Caparica, Portugal;2. Área Departamental de Física, Instituto Superior de Engenharia de Lisboa, ISEL/IPL, R. Conselheiro Emídio Navarro, 1, 1950-062 Lisboa, Portugal;3. Departamento de Física, and CeFEMA, Instituto Superior Técnico, IST/UL, Av. RoviscoPais, 1049-001 Lisboa, Portugal;4. Department of Chemical Engineering, McGill University, Montréal, QC, Canada
Abstract:This paper presents a study of the structure and dynamics of rigid fiber-laden deformable curved fluid membranes based on an viscoelastic model that integrates the statics of anisotropic membranes, the planar nematodynamics of fibers and the dynamics of isotropic membranes. Fiber-laden membranes arise frequently in biological systems, such as the plant cell wall and in protein–lipid bilayers. Based on the membrane's force and torque balance equations and the fiber's balance of molecular fields, a viscoelastic anisotropic model that provides the governing equations for the membrane's velocity and curvature and the fiber structure (fiber orientation and order) is found. A Helmholtz free energy that incorporates the tension/bending/and torsion membrane elasticity, the Landau–de Gennes fiber ordering, and fiber order-membrane curvature interactions is used to derive elastic moments, torques, and stresses. The corresponding viscous stresses and moments include the Boussinesq–Scriven contributions as well as bending, torsion, and rotational dissipation. A spectral decomposition leads to the main viscoelastic material functions for anisotropic fluid membranes. Applications of the rheological model to cylindrical growth and cylindrical axial stretching show that competing curvo-phobic, curvo-philic interactions under extensional flow predict transitions between axial and azimuthal fiber arrangements, of interest to cellulose fiber orientation in plant morphogenesis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号