首页 | 本学科首页   官方微博 | 高级检索  
     


Self‐Assembly of Imidazolium‐Based Rodlike Ionic Liquid Crystals: Transition from Lamellar to Micellar Organization
Authors:Xiaohong Cheng Prof. Dr.  Xueqing Bai  Shan Jing  Helgard Ebert Dipl.‐Chem.  Marko Prehm Dr.  Carsten Tschierske Prof. Dr.
Affiliation:1. Key Laboratory of Medicinal Chemistry for Natural Resources, Yunnan University, Kunming, Yunnan 650091 (P.R. China), Fax: (+86)?871‐5032905;2. Institute of Chemistry, Martin‐Luther University Halle‐Wittenberg, Kurt‐Mothes Strasse 2, 06120 Halle/Saale (Germany), Fax: (+49)?345‐55‐27346
Abstract:By using aryl‐amination chemistry, a series of rodlike 1‐phenyl‐1H‐imidazole‐based liquid crystals (LCs) and related imidazolium‐based ionic liquid crystals (ILCs) has been prepared. The number and length of the C‐terminal chains (at the noncharged end of the rodlike core) and the length of the N‐terminal chain (on the imidazolium unit in the ILCs) were modified and the influence of these structural parameters on the mode of self‐assembly in LC phases was investigated by polarizing microscopy, differential scanning calorimetry, and X‐ray diffraction. For the single‐chain imidazole derivatives nematic phases (N) and bilayer SmA2 phases were found, but upon increasing the number of alkyl chains the LC phases were lost. For the related imidazolium salts LC phases were preserved upon increasing the number and length of the C‐terminal chains and in this series it leads to the phase sequence SmA–columnar (Col)–micellar cubic (CubI/Pm3n). Elongation of the N‐terminal chain gives the reversed sequence. Short N‐terminal chains prefer an end‐to‐end packing of the mesogens in which these chains are separated from the C‐terminal chains. Elongation of the N‐terminal chain leads to a mixing of N‐ and C‐terminal chains, which is accompanied by complete intercalation of the aromatic cores. In the smectic phases this gives rise to a transition from bilayer (SmA2) to monolayer smectic (SmA) phases. For the columnar and cubic phases the segregated end‐to‐end packing leads to core–shell aggregates. In this case, elongation of the N‐terminal chains distorts core–shell formation and removes CubI and Col phases in favor of single‐layer SmA phases. Hence, by tailoring the length of the N‐terminal chain, a crossover from taper‐shaped to polycatenar LC tectons was achieved, which provides a powerful tool for control of self‐assembly in ILCs.
Keywords:cubic phases  imidazolium salts  ionic liquids  liquid crystals  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号