首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics of the reactions of CH2Br and CH2I radicals with molecular oxygen at atmospheric temperatures
Authors:Eskola Arkke J  Wojcik-Pastuszka Dorota  Ratajczak Emil  Timonen Raimo S
Affiliation:Laboratory of Physical Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014, Finland.
Abstract:The kinetics of the reactions of CH2Br and CH2I radicals with O2 have been studied in direct measurements using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated by pulsed laser photolysis of appropriate precursors at 193 or 248 nm. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of O2 being in large excess over radical concentrations. No buffer gas density dependence was observed for the CH2I + O2 reaction in the range 0.2-15 x 10(17) cm(-3) of He at 298 K. In this same density range the CH2Br + O2 reaction was obtained to be in the third-body and fall-off area. Measured bimolecular rate coefficient of the CH2I + O2 reaction is found to depend on temperature as k(CH2I + O2)=(1.39 +/- 0.01)x 10(-12)(T/300 K)(-1.55 +/- 0.06) cm3 s(-1)(220-450 K). Obtained primary products of this reaction are I atom and IO radical and the yield of I-atom is significant. The rate coefficient and temperature dependence of the CH2Br + O2 reaction in the third-body region is k(CH2Br + O2+ He)=(1.2 +/- 0.2)x 10(-30)(T/300 K)(-4.8 +/- 0.3) cm6 s(-1)(241-363 K), which was obtained by fitting the complete data set simultaneously to a Troe expression with the F(cent) value of 0.4. Estimated overall uncertainties in the measured reaction rate coefficients are about +/-25%.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号