首页 | 本学科首页   官方微博 | 高级检索  
     


Confocal laser scanning microscopy and scanning electron microscopy of tissue Ti-implant interfaces.
Authors:W Baschong  R Suetterlin  A Hefti  H Schiel
Affiliation:Department of Oral Surgery, Radiology and Oral Medicine, University of Basel, Basel, Switzerland.
Abstract:Microscopic inspection of heterogenous three-dimensional (3D) objects such as oral implants, or implants in general, is conventionally performed either on ground sections of methyl-metacrylate-embedded material, at the cellular level by histologic analysis of the peri-implant tissue by light microscopy (LM), or at the supramolecular level by transmission electron microscopy (TEM). Alternatively, the architecture of the tissue/implant interface is visualized by scanning electron microscopy (SEM). The two approaches exclude each other because of the sample preparation.We elaborate conditions for the non-invasive analysis of tissue/implant interfaces by confocal laser scanning microscopy (CLSM) in buffer, hoping to obtain a 3D view of fluorescently labeled tissue constituents at the tissue implant interface and, through subsequent SEM, of the metal surface. The use of water-immersion objectives, originally developed for high LM under physiological conditions is essential.In an exploratory approach, the tissue/Ti-interfaces of two retrieved dental implants were analyzed. One was a step-cylinder used for orthodontic anchoring and the other was an endosseous step-screw implant retrieved after infection-related loosening prior to load. The adhering tissue fragments were fluorescently triple-labeled for actin, fibronectin, and sm-alpha-actin. Optical sections for fluorescent images and for the laser reflection map were registered concomitantly. This approach allowed the labeled structures to be located on the metal surface. Subsequently, the same implants were prepared for SEM of the tissue/implant interface, and upon removal of the adhering structures, of the underlying metal surface. Thus, specific proteins can be identified and their spatial architecture as well as that of the underlying metal surface can be visualized for one and the same implant. The immediate visualization after fluorescence labeling in buffer by means of water immersion objective lenses proved most critical.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号