首页 | 本学科首页   官方微博 | 高级检索  
     


Facile fabrication of thermally responsive Pluronic F127-based nanocapsules for controlled release of doxorubicin hydrochloride
Authors:Zhipeng Zeng  Zhiping Peng  Lei Chen  Yiwang Chen
Affiliation:1. Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
Abstract:Novel core–shell-structured Pluronic-based nanocapsules with thermally responsive properties were successfully prepared using a modified emulsification/solvent evaporation method. The nanocapsules were constructed through the cross-linking reaction between p-nitrophenyl-activated Pluronic F127 and hyaluronic acid (HA) (named Pluronic F127/HA) or poly(ε-lysine) (PL) (named Pluronic F127/PL) at the organic/aqueous interface. The formation, size, and thermal responsiveness of the nanocapsules were characterized by 1H NMR, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The resultant shell-cross-linked nanocapsules exhibit a larger volume transformation (26 times change in volume for Pluronic F127/HA and 31 times for Pluronic F127/PL) over a temperature range of 4–37 °C because of the temperature-dependent dehydration of cross-linked Pluronic F127 polymer chains. The nanocapsules are about 72?±?4 nm (polydispersity index [PDI]?=?0.08) for Pluronic F127/PL (69?±?5 nm, PDI?=?0.10 for Pluronic F127/HA) at 37 °C with narrow size distribution and expand to about 226?±?23 nm (PDI?=?0.34) for Pluronic F127/PL (206?±?20 nm, PDI?=?0.3) for Pluronic F127/HA at 4 °C with broad size distribution in aqueous solutions. The nanocapsules were used to encapsulate and control the release of doxorubicin hydrochloride (DOX·HCl) in aqueous solution. DOX·HCl was physically encapsulated in the nanocapsules using a soaking–freeze-drying–heating procedure. The release curve and release kinetics disclosed that the thermally responsive hollow nanocapsules are good carries for drug delivery.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号