首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of Acrylamide Degradation Potential of Pseudomonas aeruginosa BAC-6 Isolated from Industrial Effluent
Authors:Vijayashree Chandrashekar  Chandrika Chandrashekar  Rajath Shivakumar  Sourav Bhattacharya  Arijit Das  Bhaskar Gouda  Subbaramiah Sundara Rajan
Institution:1. Department of Molecular Biology, Centre for Advanced Studies in Biosciences, Jain University, Bangalore, 560019, Karnataka, India
2. Department of Biochemistry, Centre for Advanced Studies in Biosciences, Jain University, Bangalore, 560019, Karnataka, India
3. Department of Plant Biotechnology, Centre for Advanced Studies in Biosciences, Jain University, Bangalore, 560019, Karnataka, India
4. Department of Microbiology, Centre for Advanced Studies in Biosciences, Jain University, Bangalore, 560019, Karnataka, India
5. Department of Lipid Science and Traditional Foods, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
Abstract:Acrylamide finds diverse industrial applications but is considered an environmental threat because of its neurotoxic, carcinogenic, and teratogenic effects. Certain bacteria enzymatically degrade acrylamide to acrylic acid and ammonia. The present investigation was carried out to isolate and identify an acrylamide-degrading bacterium from industrial effluent. Bacterial growth and extent of acrylamide degradation in the presence of different acrylamide concentrations, nutrients, varied range of pH, and temperature were analyzed. Among the eight acrylamide-degrading isolates, isolate BAC-6 demonstrated the highest degradation, and based upon the partial 16S rDNA sequencing, it was identified as Pseudomonas aeruginosa. P. aeruginosa BAC-6 grew over a wide range of acrylamide concentrations, but the highest degradation was recorded at 500 mg/L concentration with concomitant cell growth. Among the carbon supplements, mannitol supported the highest growth and degradation. Maximum degradation was reported at neutral pH. A mesophilic temperature range (25–40 °C) facilitated conducive bacterial growth followed by degradation. The highest degradation and bacterial growth were observed at 30 and 35 °C, respectively. Thus, it could be inferred from the present investigation that cultural conditions strongly affected the degradation potential of P. aeruginosa BAC-6 and advocated the utilization of the isolate in bioremediation of sites polluted with acrylamide.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号