首页 | 本学科首页   官方微博 | 高级检索  
     

服务台不可靠的重试排队系统均衡分析
引用本文:白富生,冯丹,张柯. 服务台不可靠的重试排队系统均衡分析[J]. 运筹学学报, 2021, 25(2): 1-15. DOI: 10.15960/j.cnki.issn.1007-6093.2021.02.001
作者姓名:白富生  冯丹  张柯
作者单位:1. 北京科技大学经济管理学院, 北京 100083;2. 中央财经大学管理科学与工程学院, 北京 100081
基金项目:国家自然科学基金(11991024);国家自然科学基金(11871128);重庆市自然科学基金(cstc2019jcyj-msxmX0368);重庆市自然科学基金(cstc2018jcyjAX0172)
摘    要:本文研究服务台不可靠的M/M/1常数率重试排队系统中顾客的均衡进队策略, 其中服务台在正常工作和空闲状态下以不同的速率发生故障。在该系统中, 服务台前没有等待空间, 如果到达的顾客发现服务台处于空闲状态, 该顾客可占用服务台开始服务。否则, 如果服务台处于忙碌状态, 顾客可以选择留下信息, 使得服务台在空闲时可以按顺序在重试空间中寻找之前留下信息的顾客进行服务。当服务台发生故障时, 正在被服务的顾客会发生丢失, 且系统拒绝新的顾客进入系统。根据系统提供给顾客的不同程度的信息, 研究队长可见和不可见两种信息情形下系统的稳态指标, 以及顾客基于收入-支出函数的均衡进队策略, 并建立单位时间内服务商的收益和社会福利函数。比较发现, 披露队长信息不一定能提高服务商收益和社会福利。

关 键 词:重试排队  故障  均衡进队策略  服务商收益  社会福利  
收稿时间:2020-09-17

Combined response surface method with adaptive sampling for expensive black-box global optimization
Fusheng BAI,Dan FENG,Ke ZHANG. Combined response surface method with adaptive sampling for expensive black-box global optimization[J]. OR Transactions, 2021, 25(2): 1-15. DOI: 10.15960/j.cnki.issn.1007-6093.2021.02.001
Authors:Fusheng BAI  Dan FENG  Ke ZHANG
Affiliation:1. School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China;2. School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China
Abstract:A combined response surface method is presented for expensive black-box global optimization, which can adaptively take sampling points during iterations. Under the framework of response surface method, the convex combination of the cubic radial basis function and the thin plate spline radial basis function is adopted as the response surface. In the initial phase of the algorithm, the global optimizer of the auxiliary function formed by the product of the response surface model and the power of the distance indicator function will be taken as the new sample point. In the following iterations, if the distance between the two response surface models of the two consecutive iterations is smaller than a given threshold, then the global optimizer of the current response surface model will be taken as the next sample point, otherwise the sampling strategy of the initial phase will be adopted. The effectiveness of the proposed algorithm is demonstrated by the results of the numerical experiments carried respectively on 7 standard test problems and 22 standard test problems.
Keywords:black-box function  global optimization  response surface method  radial basis function  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹学学报》浏览原始摘要信息
点击此处可从《运筹学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号