首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High energy collision-induced dissociation of alkali-metal ion adducts of crown ethers and acyclic analogs.
Authors:S Maleknia  J Brodbelt
Institution:Department of Chemistry and Biochemistry, University of Texas, Austin 78712-1167.
Abstract:High energy collision-induced dissociation (CID) techniques were applied for structural elucidation of alkali-metal ion adducts of crown ethers. The CID of alkali-metal adducts of tetraglyme and hexaethylene glycol were also evaluated to contrast the fragmentation pathways of the cyclic ethers with those of acyclic analogs. A common fragmentation channel for alkali-metal ion adducts of all the ethers, which results in distonic radical cations, is the homolytic cleavage of carbon-carbon bonds. Additionally, dissociation by carbon-oxygen bond cleavages occurs, and these processes are analogous to the fragmentation pathways observed for simple protonated ethers. The proposed fragmentation pathways for alkali-metal ion adducts of crown ethers result mostly in odd-electron, acyclic product ions. Dissociation of the alkali-metal ion adducts of the acyclic ethers is dominated by losses of various neutral species after an initial hydride or proton transfer. The CID processes for all ethers are independent of the alkali-metal ion sizes; however, the extent of dissociation of the complexes to bare alkali-metal ions increases with the size of the metal.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号