首页 | 本学科首页   官方微博 | 高级检索  
     


Carbon-carbon bond formation reaction of ethereal oxonium ylides via metal-enolate intermediates
Authors:Sawada Yuichi  Mori Takashi  Oku Akira
Affiliation:Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
Abstract:First, the carbon-carbon (C-C) bond-forming reaction of aldehydes with bicyclo[m.n.0]-1-oxonium ylides was studied as the ylide was transiently formed in the Rh(II)-catalyzed reaction of a nonenolizable diazoketone, namely, 2-(3-diazo-1,1-dimethyl-2-oxopropyl)-2-methyldioxolane (1). The reaction of 1 with benzaldehyde in the presence of ClTi(Oi-Pr)3 gave the three-carbon, ring-enlarged, and C-C-bonded product 2a (53%). Second, enolizable diazoketone 5 bearing no methyl substituents at the alpha-position was studied under similar catalytic conditions, and the ring-enlarged and C-C-bonded products 19a and 20a were also formed (87%) when titanium compound ClTi(Oi-Pr)3 or Ti(Oi-Pr)4 was used. Similar reactions of diazoketones 27, 29, and 31 bearing a cyclic acetal ring and a longer tethering chain than 5 gave C-C-bonded products 28 (74%), 30 (8%), and 32 and 33 (overall 48%), respectively, albeit 28 and 30 possessed a spiro bisacetal structure. Thus, the hitherto unclarified C-C bond formation of ethereal oxonium ylides with carbonyl electrophiles was realized with the use of an appropriate Lewis acid, for example, ClTi(Oi-Pr)3.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号