首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Making thermodynamic models of mixtures predictive by machine learning: matrix completion of pair interactions
Authors:Fabian Jirasek  Robert Bamler  Sophie Fellenz  Michael Bortz  Marius Kloft  Stephan Mandt  Hans Hasse
Abstract:Predictive models of thermodynamic properties of mixtures are paramount in chemical engineering and chemistry. Classical thermodynamic models are successful in generalizing over (continuous) conditions like temperature and concentration. On the other hand, matrix completion methods (MCMs) from machine learning successfully generalize over (discrete) binary systems; these MCMs can make predictions without any data for a given binary system by implicitly learning commonalities across systems. In the present work, we combine the strengths from both worlds in a hybrid approach. The underlying idea is to predict the pair-interaction energies, as they are used in basically all physical models of liquid mixtures, by an MCM. As an example, we embed an MCM into UNIQUAC, a widely-used physical model for the Gibbs excess energy. We train the resulting hybrid model in a Bayesian machine-learning framework on experimental data for activity coefficients in binary systems of 1146 components from the Dortmund Data Bank. We thereby obtain, for the first time, a complete set of UNIQUAC parameters for all binary systems of these components, which allows us to predict, in principle, activity coefficients at arbitrary temperature and composition for any combination of these components, not only for binary but also for multicomponent systems. The hybrid model even outperforms the best available physical model for predicting activity coefficients, the modified UNIFAC (Dortmund) model.

Embedding matrix completion methods from machine learning in classical thermodynamic models creates powerful hybrid models for predicting properties of mixtures.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号