首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoelectrochemical water oxidation improved by pyridine N-oxide as a mimic of tyrosine-Z in photosystem II
Authors:Yong Zhu  Guoquan Liu  Ran Zhao  Hua Gao  Xiaona Li  Licheng Sun  Fei Li
Abstract:Artificial photosynthesis provides a way to store solar energy in chemical bonds with water oxidation as a major challenge for creating highly efficient and robust photoanodes that mimic photosystem II. We report here an easily available pyridine N-oxide (PNO) derivative as an efficient electron transfer relay between an organic light absorber and molecular water oxidation catalyst on a nanoparticle TiO2 photoanode. Spectroscopic and kinetic studies revealed that the PNO/PNO+˙ couple closely mimics the redox behavior of the tyrosine/tyrosyl radical pair in PSII in improving light-driven charge separation via multi-step electron transfer. The integrated photoanode exhibited a 1 sun current density of 3 mA cm−2 in the presence of Na2SO3 and a highly stable photocurrent density of >0.5 mA cm−2 at 0.4 V vs. NHE over a period of 1 h for water oxidation at pH 7. The performance shown here is superior to those of previously reported organic dye-based photoanodes in terms of photocurrent and stability.

Stable and high photocurrent for water oxidation was achieved by an organic dye-sensitized photoanode with a pyridine N-oxide derivative as an efficient electron relay between the chromophore and molecular water oxidation catalyst.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号