首页 | 本学科首页   官方微博 | 高级检索  
     


Crystallization-controlled dynamic self-assembly and an on/off switch for equilibration using boronic ester formation
Authors:Takahagi Hiroki  Iwasawa Nobuharu
Affiliation:Department of Chemistry, Tokyo Institute of Technology, CREST-JST, 2-12-1 E1-2, O-okayama, Meguro-ku, Tokyo 152-8551, Japan.
Abstract:Macrocyclic boronic esters of different sizes can be prepared selectively from the same starting diboronic acid and 1,2-diol by means of an interesting dynamic self-assembly phenomena. More specifically, two kinds of macrocyclic boronic esters could be formed diastereoselectively and nearly quantitatively under neutral conditions by the addition of an appropriate guest molecule that acts as a template. Although a mixture of tetrol 1 and di(boronic acid) 2 in methanol gave only insoluble polymeric boronic esters, a soluble macrocyclic boronic ester, homo-[2+2], was obtained selectively in the presence of toluene as a guest molecule. Furthermore, when benzene was employed as a guest molecule, the selective formation of another macrocyclic boronic ester, hetero-[3+3], occurred. Interestingly, each of these macrocycles could be converted into the other in the presence of methanol and the appropriate guest molecule; however, under aprotic conditions, guest molecules encaged by the macrocyclic boronic ester could be exchanged without affecting its structure. Thus the presence or absence of a protic solvent could be used as a regulator to switch on or off the dynamic equilibrium of the system. In addition, investigation of the effect of reaction time, direct observation of the reaction mixture by NMR spectroscopy, and carrying out the reaction using optically active tetrol suggested that precipitation plays an essentially important role in the selective formation of the macrocyclic boronic esters. Thus, although both of [2+2] and [3+3] were present as solutes in the reaction mixture, the type of added guest molecule induced the selective precipitation of only one form of macrocyclic boronic ester, hence displacing the equilibrium of the system.
Keywords:boron  cage compounds  diastereoselectivity  dynamic covalent chemistry  self‐assembly
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号